The bright and the dark sides of L-carnitine supplementation: a systematic review | Journal of the International Society of Sports Nutrition

1
5

[ad_1]

  • 1.

    Bremer J. Carnitine–metabolism and functions. Physiol Rev. 1983;63(4):1420–80. https://doi.org/10.1152/physrev.1983.63.4.1420.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 2.

    Arenas J, Huertas R, Campos Y, Diaz AE, Villalon JM, Vilas E. Effects of L-carnitine on the pyruvate dehydrogenase complex and carnitine palmitoyl transferase activities in muscle of endurance athletes. FEBS Lett. 1994;341(1):91–3. https://doi.org/10.1016/0014-5793(94)80246-7.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 3.

    Ringseis R, Keller J, Eder K. Mechanisms underlying the anti-wasting effect of L-carnitine supplementation under pathologic conditions: evidence from experimental and clinical studies. Eur J Nutr. 2013;52(5):1421–42. https://doi.org/10.1007/s00394-013-0511-0.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 4.

    Brass EP. Supplemental carnitine and exercise. Am J Clin Nutr. 2000;72(2 Suppl):618S–23S. https://doi.org/10.1093/ajcn/72.2.618S.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 5.

    Wall BT, Stephens FB, Constantin-Teodosiu D, Marimuthu K, Macdonald IA, Greenhaff PL. Chronic oral ingestion of L-carnitine and carbohydrate increases muscle carnitine content and alters muscle fuel metabolism during exercise in humans. J Physiol. 2011;589(Pt 4):963–73. https://doi.org/10.1113/jphysiol.2010.201343.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6.

    Stephens FB, Wall BT, Marimuthu K, Shannon CE, Constantin-Teodosiu D, Macdonald IA, Greenhaff PL. Skeletal muscle carnitine loading increases energy expenditure, modulates fuel metabolism gene networks and prevents body fat accumulation in humans. J Physiol. 2013;591(18):4655–66. https://doi.org/10.1113/jphysiol.2013.255364.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 7.

    Shannon CE, Ghasemi R, Greenhaff PL, Stephens FB. Increasing skeletal muscle carnitine availability does not alter the adaptations to high-intensity interval training. Scand J Med Sci Sports. 2018;28(1):107–15. https://doi.org/10.1111/sms.12885.

    Article 
    PubMed 

    Google Scholar
     

  • 8.

    Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, Britt EB, Fu X, Wu Y, Li L, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013;19(5):576–85. https://doi.org/10.1038/nm.3145.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 9.

    Baltazar-Martins G, Brito de Souza D, Aguilar-Navarro M, Munoz-Guerra J, MDM P, Del Coso J. Prevalence and patterns of dietary supplement use in elite Spanish athletes. J Int Soc Sports Nutr. 2019;16(1):30. https://doi.org/10.1186/s12970-019-0296-5.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 10.

    Wardenaar FC, Ceelen IJ, Van Dijk JW, Hangelbroek RW, Van Roy L, Van der Pouw B, De Vries JH, Mensink M, Witkamp RF. Nutritional supplement use by Dutch elite and sub-elite athletes: does receiving dietary counseling make a difference? Int J Sport Nutr Exerc Metab. 2017;27(1):32–42. https://doi.org/10.1123/ijsnem.2016-0157.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 11.

    Wachter S, Vogt M, Kreis R, Boesch C, Bigler P, Hoppeler H, Krahenbuhl S. Long-term administration of L-carnitine to humans: effect on skeletal muscle carnitine content and physical performance. Clin Chim Acta. 2002;318(1–2):51–61. https://doi.org/10.1016/s0009-8981(01)00804-x.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 12.

    Novakova K, Kummer O, Bouitbir J, Stoffel SD, Hoerler-Koerner U, Bodmer M, Roberts P, Urwyler A, Ehrsam R, Krahenbuhl S. Effect of L-carnitine supplementation on the body carnitine pool, skeletal muscle energy metabolism and physical performance in male vegetarians. Eur J Nutr. 2016;55(1):207–17. https://doi.org/10.1007/s00394-015-0838-9.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 13.

    Lohninger A, Sendic A, Litzlbauer E, Hofbauer R, Staniek H, Blesky D, Schwieglhofer C, Eder M, Bergmuller H, Mascher D, et al. Endurance exercise training and L-carnitine supplementation stimulates gene expression in the blood and muscle cells in young athletes and middle aged subjects. Monatshefte Fur Chemie. 2005;136(8):1425–42. https://doi.org/10.1007/s00706-005-0335-6.

    CAS 
    Article 

    Google Scholar
     

  • 14.

    Malaguarnera M, Cammalleri L, Gargante MP, Vacante M, Colonna V, Motta M. L-Carnitine treatment reduces severity of physical and mental fatigue and increases cognitive functions in centenarians: a randomized and controlled clinical trial. Am J Clin Nutr. 2007;86(6):1738–44. https://doi.org/10.1093/ajcn/86.5.1738.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 15.

    Sawicka AK, Hartmane D, Lipinska P, Wojtowicz E, Lysiak-Szydlowska W, Olek RA. l-Carnitine Supplementation in Older Women. A Pilot Study on Aging Skeletal Muscle Mass and Function. Nutrients. 2018;10(2). https://doi.org/10.3390/nu10020255.

  • 16.

    Samulak JJ, Sawicka AK, Hartmane D, Grinberga S, Pugovics O, Lysiak-Szydlowska W, Olek RA. L-Carnitine supplementation increases Trimethylamine-N-oxide but not markers of atherosclerosis in healthy aged women. Ann Nutr Metab. 2019;74(1):11–7. https://doi.org/10.1159/000495037.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 17.

    Olek RA, Samulak JJ, Sawicka AK, Hartmane D, Grinberga S, Pugovics O, Lysiak-Szydlowska W. Increased Trimethylamine N-oxide is not associated with oxidative stress markers in healthy aged women. Oxidative Med Cell Longev. 2019;2019:6247169. https://doi.org/10.1155/2019/6247169.

    CAS 
    Article 

    Google Scholar
     

  • 18.

    Bordoni L, Sawicka AK, Szarmach A, Winklewski PJ, Olek RA, Gabbianelli R. A pilot study on the effects of l-Carnitine and Trimethylamine-N-oxide on platelet mitochondrial DNA methylation and CVD biomarkers in aged women. Int J Mol Sci. 2020;21(3):1047.

    CAS 
    Article 

    Google Scholar
     

  • 19.

    Grunewald KK, Bailey RS. Commercially marketed supplements for bodybuilding athletes. Sports Med. 1993;15(2):90–103. https://doi.org/10.2165/00007256-199315020-00003.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 20.

    Hawley JA, Brouns F, Jeukendrup A. Strategies to enhance fat utilisation during exercise. Sports Med. 1998;25(4):241–57. https://doi.org/10.2165/00007256-199825040-00003.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 21.

    Barnett C, Costill DL, Vukovich MD, Cole KJ, Goodpaster BH, Trappe SW, Fink WJ. Effect of L-carnitine supplementation on muscle and blood carnitine content and lactate accumulation during high-intensity sprint cycling. Int J Sport Nutr. 1994;4(3):280–8. https://doi.org/10.1123/ijsn.4.3.280.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 22.

    Vukovich MD, Costill DL, Fink WJ. Carnitine supplementation: effect on muscle carnitine and glycogen content during exercise. Med Sci Sports Exerc. 1994;26(9):1122–9.

    CAS 
    Article 

    Google Scholar
     

  • 23.

    Rebouche CJ. Carnitine movement across muscle cell membranes. Studies in isolated rat muscle. Biochim Biophys Acta. 1977;471(1):145–55. https://doi.org/10.1016/0005-2736(77)90402-3.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 24.

    Stephens FB, Constantin-Teodosiu D, Laithwaite D, Simpson EJ, Greenhaff PL. Insulin stimulates L-carnitine accumulation in human skeletal muscle. FASEB J. 2006;20(2):377–9. https://doi.org/10.1096/fj.05-4985fje.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 25.

    Stephens FB, Constantin-Teodosiu D, Laithwaite D, Simpson EJ, Greenhaff PL. An acute increase in skeletal muscle carnitine content alters fuel metabolism in resting human skeletal muscle. J Clin Endocrinol Metab. 2006;91(12):5013–8. https://doi.org/10.1210/jc.2006-1584.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 26.

    Stephens FB, Evans CE, Constantin-Teodosiu D, Greenhaff PL. Carbohydrate ingestion augments L-carnitine retention in humans. J Appl Physiol (1985). 2007;102(3):1065–70. https://doi.org/10.1152/japplphysiol.01011.2006.

    CAS 
    Article 

    Google Scholar
     

  • 27.

    Attaix D, Ventadour S, Codran A, Bechet D, Taillandier D, Combaret L. The ubiquitin-proteasome system and skeletal muscle wasting. Essays Biochem. 2005;41:173–86. https://doi.org/10.1042/EB0410173.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 28.

    Schiaffino S, Dyar KA, Ciciliot S, Blaauw B, Sandri M. Mechanisms regulating skeletal muscle growth and atrophy. FEBS J. 2013;280(17):4294–314. https://doi.org/10.1111/febs.12253.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 29.

    Sanchez AM, Candau RB, Bernardi H. FoxO transcription factors: their roles in the maintenance of skeletal muscle homeostasis. Cell Mol Life Sci. 2014;71(9):1657–71. https://doi.org/10.1007/s00018-013-1513-z.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 30.

    Keller J, Ringseis R, Priebe S, Guthke R, Kluge H, Eder K. Dietary L-carnitine alters gene expression in skeletal muscle of piglets. Mol Nutr Food Res. 2011;55(3):419–29. https://doi.org/10.1002/mnfr.201000293.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 31.

    Keller J, Ringseis R, Koc A, Lukas I, Kluge H, Eder K. Supplementation with l-carnitine downregulates genes of the ubiquitin proteasome system in the skeletal muscle and liver of piglets. Animal. 2012;6(1):70–8. https://doi.org/10.1017/S1751731111001327.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 32.

    Busquets S, Serpe R, Toledo M, Betancourt A, Marmonti E, Orpi M, Pin F, Capdevila E, Madeddu C, Lopez-Soriano FJ, et al. L-Carnitine: an adequate supplement for a multi-targeted anti-wasting therapy in cancer. Clin Nutr. 2012;31(6):889–95. https://doi.org/10.1016/j.clnu.2012.03.005.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 33.

    Keller J, Couturier A, Haferkamp M, Most E, Eder K. Supplementation of carnitine leads to an activation of the IGF-1/PI3K/Akt signalling pathway and down regulates the E3 ligase MuRF1 in skeletal muscle of rats. Nutr Metab (Lond). 2013;10(1):28. https://doi.org/10.1186/1743-7075-10-28.

    CAS 
    Article 

    Google Scholar
     

  • 34.

    Keller J, Ringseis R, Eder K. Supplemental carnitine affects the microRNA expression profile in skeletal muscle of obese Zucker rats. BMC Genomics. 2014;15:512. https://doi.org/10.1186/1471-2164-15-512.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    Jang J, Park J, Chang H, Lim K. L-Carnitine supplement reduces skeletal muscle atrophy induced by prolonged hindlimb suspension in rats. Appl Physiol Nutr Metab. 2016;41(12):1240–7. https://doi.org/10.1139/apnm-2016-0094.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 36.

    Di Marzio L, Moretti S, D’Alo S, Zazzeroni F, Marcellini S, Smacchia C, Alesse E, Cifone MG, De Simone C. Acetyl-L-carnitine administration increases insulin-like growth factor 1 levels in asymptomatic HIV-1-infected subjects: correlation with its suppressive effect on lymphocyte apoptosis and ceramide generation. Clin Immunol. 1999;92(1):103–10. https://doi.org/10.1006/clim.1999.4727.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 37.

    Kraemer WJ, Volek JS, French DN, Rubin MR, Sharman MJ, Gomez AL, Ratamess NA, Newton RU, Jemiolo B, Craig BW, et al. The effects of L-carnitine L-tartrate supplementation on hormonal responses to resistance exercise and recovery. J Strength Cond Res. 2003;17(3):455–62. https://doi.org/10.1519/1533-4287(2003)017<0455:teolls>2.0.co;2.

    Article 
    PubMed 

    Google Scholar
     

  • 38.

    Rondanelli M, Solerte SB, Fioravanti M, Scevola D, Locatelli M, Minoli L, Ferrari E. Circadian secretory pattern of growth hormone, insulin-like growth factor type I, cortisol, adrenocorticotropic hormone, thyroid-stimulating hormone, and prolactin during HIV infection. AIDS Res Hum Retrovir. 1997;13(14):1243–9. https://doi.org/10.1089/aid.1997.13.1243.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 39.

    Evans M, Guthrie N, Pezzullo J, Sanli T, Fielding RA, Bellamine A. Efficacy of a novel formulation of L-Carnitine, creatine, and leucine on lean body mass and functional muscle strength in healthy older adults: a randomized, double-blind placebo-controlled study. Nutr Metab (Lond). 2017;14:7. https://doi.org/10.1186/s12986-016-0158-y.

    CAS 
    Article 

    Google Scholar
     

  • 40.

    Askarpour M, Hadi A, Miraghajani M, Symonds ME, Sheikhi A, Ghaedi E. Beneficial effects of l-carnitine supplementation for weight management in overweight and obese adults: an updated systematic review and dose-response meta-analysis of randomized controlled trials. Pharmacol Res. 2020;151:104554. https://doi.org/10.1016/j.phrs.2019.104554.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 41.

    Lee JK, Lee JS, Park H, Cha YS, Yoon CS, Kim CK. Effect of L-carnitine supplementation and aerobic training on FABPc content and beta-HAD activity in human skeletal muscle. Eur J Appl Physiol. 2007;99(2):193–9. https://doi.org/10.1007/s00421-006-0333-3.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 42.

    Rafraf M, Karimi M, Jafari A. Effect of L-carnitine supplementation in comparison with moderate aerobic training on serum inflammatory parameters in healthy obese women. J Sports Med Phys Fitness. 2015;55(11):1363–70.

    CAS 
    PubMed 

    Google Scholar
     

  • 43.

    Koozehchian MS, Daneshfar A, Fallah E, Agha-Alinejad H, Samadi M, Kaviani M, Kaveh BM, Jung YP, Sablouei MH, Moradi N, et al. Effects of nine weeks L-Carnitine supplementation on exercise performance, anaerobic power, and exercise-induced oxidative stress in resistance-trained males. J Exerc Nutrition Biochem. 2018;22(4):7–19. https://doi.org/10.20463/jenb.2018.0026.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 44.

    Ahlborg G, Jensen-Urstad M. Metabolism in exercising arm vs. leg muscle. Clin Physiol. 1991;11(5):459–68. https://doi.org/10.1111/j.1475-097x.1991.tb00818.x.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 45.

    Doherty TJ. Invited review: Aging and sarcopenia. J Appl Physiol (1985). 2003;95(4):1717–27. https://doi.org/10.1152/japplphysiol.00347.2003.

    CAS 
    Article 

    Google Scholar
     

  • 46.

    Volpato S, Bianchi L, Cherubini A, Landi F, Maggio M, Savino E, Bandinelli S, Ceda GP, Guralnik JM, Zuliani G, et al. Prevalence and clinical correlates of sarcopenia in community-dwelling older people: application of the EWGSOP definition and diagnostic algorithm. J Gerontol A Biol Sci Med Sci. 2014;69(4):438–46. https://doi.org/10.1093/gerona/glt149.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 47.

    Peake J, Suzuki K. Neutrophil activation, antioxidant supplements and exercise-induced oxidative stress. Exerc Immunol Rev. 2004;10:129–41.

    PubMed 

    Google Scholar
     

  • 48.

    Peake J, Nosaka K, Suzuki K. Characterization of inflammatory responses to eccentric exercise in humans. Exerc Immunol Rev. 2005;11:64–85.

    PubMed 

    Google Scholar
     

  • 49.

    Fritz IB, Arrigoni-Martelli E. Sites of action of carnitine and its derivatives on the cardiovascular system: interactions with membranes. Trends Pharmacol Sci. 1993;14(10):355–60. https://doi.org/10.1016/0165-6147(93)90093-y.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 50.

    Giamberardino MA, Dragani L, Valente R, Di Lisa F, Saggini R, Vecchiet L. Effects of prolonged L-carnitine administration on delayed muscle pain and CK release after eccentric effort. Int J Sports Med. 1996;17(5):320–4. https://doi.org/10.1055/s-2007-972854.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 51.

    Volek JS, Kraemer WJ, Rubin MR, Gomez AL, Ratamess NA, Gaynor P. L-Carnitine L-tartrate supplementation favorably affects markers of recovery from exercise stress. Am J Physiol Endocrinol Metab. 2002;282(2):E474–82. https://doi.org/10.1152/ajpendo.00277.2001.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 52.

    Spiering BA, Kraemer WJ, Vingren JL, Hatfield DL, Fragala MS, Ho JY, Maresh CM, Anderson JM, Volek JS. Responses of criterion variables to different supplemental doses of L-carnitine L-tartrate. J Strength Cond Res. 2007;21(1):259–64. https://doi.org/10.1519/00124278-200702000-00046.

    Article 
    PubMed 

    Google Scholar
     

  • 53.

    Ho JY, Kraemer WJ, Volek JS, Fragala MS, Thomas GA, Dunn-Lewis C, Coday M, Hakkinen K, Maresh CM. L-Carnitine l-tartrate supplementation favorably affects biochemical markers of recovery from physical exertion in middle-aged men and women. Metabolism. 2010;59(8):1190–9. https://doi.org/10.1016/j.metabol.2009.11.012.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 54.

    Spiering BA, Kraemer WJ, Hatfield DL, Vingren JL, Fragala MS, Ho JY, Thomas GA, Hakkinen K, Volek JS. Effects of L-carnitine L-tartrate supplementation on muscle oxygenation responses to resistance exercise. J Strength Cond Res. 2008;22(4):1130–5. https://doi.org/10.1519/JSC.0b013e31817d48d9.

    Article 
    PubMed 

    Google Scholar
     

  • 55.

    Rebouche CJ, Mack DL, Edmonson PF. L-Carnitine dissimilation in the gastrointestinal tract of the rat. Biochemistry. 1984;23(26):6422–6.

    CAS 
    Article 

    Google Scholar
     

  • 56.

    Rebouche CJ. Quantitative estimation of absorption and degradation of a carnitine supplement by human adults. Metabolism. 1991;40(12):1305–10.

    CAS 
    Article 

    Google Scholar
     

  • 57.

    Rebouche CJ, Chenard CA. Metabolic fate of dietary carnitine in human adults: identification and quantification of urinary and fecal metabolites. J Nutr. 1991;121(4):539–46. https://doi.org/10.1093/jn/121.4.539.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 58.

    Fukami K, Yamagishi S, Sakai K, Kaida Y, Yokoro M, Ueda S, Wada Y, Takeuchi M, Shimizu M, Yamazaki H, et al. Oral L-carnitine supplementation increases trimethylamine-N-oxide but reduces markers of vascular injury in hemodialysis patients. J Cardiovasc Pharmacol. 2015;65(3):289–95. https://doi.org/10.1097/FJC.0000000000000197.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 59.

    Vallance HD, Koochin A, Branov J, Rosen-Heath A, Bosdet T, Wang Z, Hazen SL, Horvath G. Marked elevation in plasma trimethylamine-N-oxide (TMAO) in patients with mitochondrial disorders treated with oral l-carnitine. Mol Genet Metab Rep. 2018;15:130–3. https://doi.org/10.1016/j.ymgmr.2018.04.005.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 60.

    Samulak JJ, Sawicka AK, Samborowska E, Olek RA. Plasma Trimethylamine-N-oxide following Cessation of L-carnitine Supplementation in Healthy Aged Women. Nutrients. 2019;11(6). https://doi.org/10.3390/nu11061322.

  • 61.

    Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, Feldstein AE, Britt EB, Fu X, Chung YM, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472(7341):57–63. https://doi.org/10.1038/nature09922.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 62.

    Pan A, Sun Q, Bernstein AM, Schulze MB, Manson JE, Stampfer MJ, Willett WC, Hu FB. Red meat consumption and mortality: results from 2 prospective cohort studies. Arch Intern Med. 2012;172(7):555–63. https://doi.org/10.1001/archinternmed.2011.2287.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 63.

    Tang WH, Wang Z, Levison BS, Koeth RA, Britt EB, Fu X, Wu Y, Hazen SL. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med. 2013;368(17):1575–84. https://doi.org/10.1056/NEJMoa1109400.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 64.

    Tang WH, Wang Z, Kennedy DJ, Wu Y, Buffa JA, Agatisa-Boyle B, Li XS, Levison BS, Hazen SL. Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circ Res. 2015;116(3):448–55. https://doi.org/10.1161/CIRCRESAHA.116.305360.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 65.

    Suzuki T, Heaney LM, Bhandari SS, Jones DJ, Ng LL. Trimethylamine N-oxide and prognosis in acute heart failure. Heart. 2016;102(11):841–8. https://doi.org/10.1136/heartjnl-2015-308826.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 66.

    Gruppen EG, Garcia E, Connelly MA, Jeyarajah EJ, Otvos JD, Bakker SJL, Dullaart RPF. TMAO is associated with mortality: impact of modestly impaired renal function. Sci Rep. 2017;7(1):13781. https://doi.org/10.1038/s41598-017-13739-9.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 67.

    Heianza Y, Ma W, Manson JE, Rexrode KM, Qi L. Gut Microbiota Metabolites and Risk of Major Adverse Cardiovascular Disease Events and Death: A Systematic Review and Meta-Analysis of Prospective Studies. J Am Heart Assoc. 2017;6(7). https://doi.org/10.1161/JAHA.116.004947.

  • 68.

    Schiattarella GG, Sannino A, Toscano E, Giugliano G, Gargiulo G, Franzone A, Trimarco B, Esposito G, Perrino C. Gut microbe-generated metabolite trimethylamine-N-oxide as cardiovascular risk biomarker: a systematic review and dose-response meta-analysis. Eur Heart J. 2017;38(39):2948–56. https://doi.org/10.1093/eurheartj/ehx342.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 69.

    Rebouche CJ, Engel AG. Kinetic compartmental analysis of carnitine metabolism in the human carnitine deficiency syndromes. Evidence for alterations in tissue carnitine transport. J Clin Invest. 1984;73(3):857–67. https://doi.org/10.1172/JCI111281.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 70.

    Wang Z, Bergeron N, Levison BS, Li XS, Chiu S, Jia X, Koeth RA, Li L, Wu Y, Tang WHW, et al. Impact of chronic dietary red meat, white meat, or non-meat protein on trimethylamine N-oxide metabolism and renal excretion in healthy men and women. Eur Heart J. 2019;40(7):583–94. https://doi.org/10.1093/eurheartj/ehy799.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 71.

    Rohrmann S, Linseisen J, Allenspach M, von Eckardstein A, Muller D. Plasma concentrations of Trimethylamine-N-oxide are directly associated with dairy food consumption and low-grade inflammation in a German adult population. J Nutr. 2016;146(2):283–9. https://doi.org/10.3945/jn.115.220103.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 72.

    Cheung W, Keski-Rahkonen P, Assi N, Ferrari P, Freisling H, Rinaldi S, Slimani N, Zamora-Ros R, Rundle M, Frost G, et al. A metabolomic study of biomarkers of meat and fish intake. Am J Clin Nutr. 2017;105(3):600–8. https://doi.org/10.3945/ajcn.116.146639.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 73.

    Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN. Living with water stress: evolution of osmolyte systems. Science. 1982;217(4566):1214–22. https://doi.org/10.1126/science.7112124.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 74.

    Gillett MB, Suko JR, Santoso FO, Yancey PH. Elevated levels of trimethylamine oxide in muscles of deep-sea gadiform teleosts: a high-pressure adaptation? J Exp Zool. 1997;279(4):386–91. https://doi.org/10.1002/(sici)1097-010x(19971101)279:4<386::Aid-jez8>3.0.Co;2-k.

    CAS 
    Article 

    Google Scholar
     

  • 75.

    Yancey PH, Gerringer ME, Drazen JC, Rowden AA, Jamieson A. Marine fish may be biochemically constrained from inhabiting the deepest ocean depths. Proc Natl Acad Sci U S A. 2014;111(12):4461–5. https://doi.org/10.1073/pnas.1322003111.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 76.

    Zhang AQ, Mitchell SC, Smith RL. Dietary precursors of trimethylamine in man: a pilot study. Food Chem Toxicol. 1999;37(5):515–20.

    CAS 
    Article 

    Google Scholar
     

  • 77.

    Tong TYN, Appleby PN, Bradbury KE, Perez-Cornago A, Travis RC, Clarke R, Key TJ. Risks of ischaemic heart disease and stroke in meat eaters, fish eaters, and vegetarians over 18 years of follow-up: results from the prospective EPIC-Oxford study. BMJ. 2019;366:l4897. https://doi.org/10.1136/bmj.l4897.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 78.

    Bain MA, Faull R, Fornasini G, Milne RW, Evans AM. Accumulation of trimethylamine and trimethylamine-N-oxide in end-stage renal disease patients undergoing haemodialysis. Nephrol Dial Transplant. 2006;21(5):1300–4. https://doi.org/10.1093/ndt/gfk056.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 79.

    Hauet T, Baumert H, Gibelin H, Godart C, Carretier M, Eugene M. Citrate, acetate and renal medullary osmolyte excretion in urine as predictor of renal changes after cold ischaemia and transplantation. Clin Chem Lab Med. 2000;38(11):1093–8. https://doi.org/10.1515/CCLM.2000.162.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 80.

    Gansevoort RT, Correa-Rotter R, Hemmelgarn BR, Jafar TH, Heerspink HJ, Mann JF, Matsushita K, Wen CP. Chronic kidney disease and cardiovascular risk: epidemiology, mechanisms, and prevention. Lancet. 2013;382(9889):339–52. https://doi.org/10.1016/S0140-6736(13)60595-4.

    Article 
    PubMed 

    Google Scholar
     

  • 81.

    Damman K, Valente MA, Voors AA, O’Connor CM, van Veldhuisen DJ, Hillege HL. Renal impairment, worsening renal function, and outcome in patients with heart failure: an updated meta-analysis. Eur Heart J. 2014;35(7):455–69. https://doi.org/10.1093/eurheartj/eht386.

    Article 
    PubMed 

    Google Scholar
     

  • 82.

    Bielinska K, Radkowski M, Grochowska M, Perlejewski K, Huc T, Jaworska K, Motooka D, Nakamura S, Ufnal M. High salt intake increases plasma trimethylamine N-oxide (TMAO) concentration and produces gut dysbiosis in rats. Nutrition. 2018;54:33–9. https://doi.org/10.1016/j.nut.2018.03.004.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 83.

    Jaworska K, Huc T, Samborowska E, Dobrowolski L, Bielinska K, Gawlak M, Ufnal M. Hypertension in rats is associated with an increased permeability of the colon to TMA, a gut bacteria metabolite. PLoS One. 2017;12(12):e0189310. https://doi.org/10.1371/journal.pone.0189310.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 84.

    Xu M, Bhatt DK, Yeung CK, Claw KG, Chaudhry AS, Gaedigk A, Pearce RE, Broeckel U, Gaedigk R, Nickerson DA, et al. Genetic and nongenetic factors associated with protein abundance of Flavin-containing Monooxygenase 3 in human liver. J Pharmacol Exp Ther. 2017;363(2):265–74. https://doi.org/10.1124/jpet.117.243113.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 85.

    Ufnal M, Pham K. The gut-blood barrier permeability – a new marker in cardiovascular and metabolic diseases? Med Hypotheses. 2017;98:35–7. https://doi.org/10.1016/j.mehy.2016.11.012.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 86.

    Lango R, Smolenski RT, Narkiewicz M, Suchorzewska J, Lysiak-Szydlowska W. Influence of L-carnitine and its derivatives on myocardial metabolism and function in ischemic heart disease and during cardiopulmonary bypass. Cardiovasc Res. 2001;51(1):21–9. https://doi.org/10.1016/s0008-6363(01)00313-3.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 87.

    Iliceto S, Scrutinio D, Bruzzi P, D’Ambrosio G, Boni L, Di Biase M, Biasco G, Hugenholtz PG, Rizzon P. Effects of L-carnitine administration on left ventricular remodeling after acute anterior myocardial infarction: the L-Carnitine Ecocardiografia Digitalizzata Infarto Miocardico (CEDIM) trial. J Am Coll Cardiol. 1995;26(2):380–7.

    CAS 
    Article 

    Google Scholar
     

  • 88.

    Hiramatsu A, Aikata H, Uchikawa S, Ohya K, Kodama K, Nishida Y, Daijo K, Osawa M, Teraoka Y, Honda F, et al. Levocarnitine use is associated with improvement in sarcopenia in patients with liver cirrhosis. Hepatol Commun. 2019;3(3):348–55. https://doi.org/10.1002/hep4.1309.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 89.

    Hathcock JN, Shao A. Risk assessment for carnitine. Regul Toxicol Pharmacol. 2006;46(1):23–8. https://doi.org/10.1016/j.yrtph.2006.06.007.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 90.

    Shang R, Sun Z, Li H. Effective dosing of L-carnitine in the secondary prevention of cardiovascular disease: a systematic review and meta-analysis. BMC Cardiovasc Disord. 2014;14:88. https://doi.org/10.1186/1471-2261-14-88.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 91.

    Bakalov D, Sabit Z, Tafradjiiska-Hadjiolova R. Re: effect of l-carnitine supplementation on muscle cramps induced by stroke: a case report. Nutrition. 2020;75-76:110771. https://doi.org/10.1016/j.nut.2020.110771.

    Article 
    PubMed 

    Google Scholar
     

  • [ad_2]

    Source link

    1 COMMENT

    1. magnificent publish, very informative. I wonder
      why the other specialists of this sector don’t realize
      this. You should proceed your writing. I’m confident, you’ve a huge readers’
      base already!

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here